
OmniSQL: Synthesizing High-quality Text-to-SQL Data at Scale
Haoyang Li

Renmin University of China
lihaoyang.cs@ruc.edu.cn

Shang Wu
Renmin University of China

wushang_@ruc.edu.cn

Xiaokang Zhang
Renmin University of China

zhang2718@ruc.edu.cn

Xinmei Huang
Renmin University of China
huangxinmei@ruc.edu.cn

Jing Zhang
Renmin University of China
zhang-jing@ruc.edu.cn

Fuxin Jiang
ByteDance Inc

jiangfuxin@bytedance.com

Shuai Wang
ByteDance Inc

wangshuai.will@bytedance.com

Tieying Zhang
ByteDance Inc

tieying.zhang@bytedance.com

Jianjun Chen
ByteDance Inc

jianjun.chen@bytedance.com

Rui Shi
ByteDance Inc

shirui@bytedance.com

Hong Chen
Renmin University of China

chong@ruc.edu.cn

Cuiping Li
Renmin University of China

licuiping@ruc.edu.cn

ABSTRACT

Text-to-SQL, the task of translating natural language questions into
SQL queries, plays a crucial role in enabling non-experts to inter-
act with databases. While recent advancements in large language
models (LLMs) have significantly enhanced text-to-SQL perfor-
mance, existing approaches face notable limitations in real-world
text-to-SQL applications. Prompting-based methods often depend
on closed-source LLMs, which are expensive, raise privacy con-
cerns, and lack customization. Fine-tuning-based methods, on the
other hand, suffer from poor generalizability due to the limited
coverage of publicly available training data. To overcome these chal-
lenges, we propose a novel and scalable text-to-SQL data synthesis
framework for automatically synthesizing large-scale, high-quality,
and diverse datasets without extensive human intervention. Using
this framework, we introduce SynSQL-2.5M, the first million-scale
text-to-SQL dataset, containing 2.5 million samples spanning over
16,000 synthetic databases. Each sample includes a database, SQL
query, natural language question, and chain-of-thought (CoT) solu-
tion. Leveraging SynSQL-2.5M, we develop OmniSQL, a powerful
open-source text-to-SQL model available in three sizes: 7B, 14B,
and 32B. Extensive evaluations across nine datasets demonstrate
that OmniSQL achieves state-of-the-art performance, matching or
surpassing leading closed-source and open-source LLMs, including
GPT-4o and DeepSeek-V3, despite its smaller size. We release all
code, datasets, and models to support further research.

PVLDB Reference Format:

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang,
Fuxin Jiang, Shuai Wang, Tieying Zhang, Jianjun Chen, Rui Shi, Hong
Chen, and Cuiping Li. OmniSQL: Synthesizing High-quality Text-to-SQL
Data at Scale. PVLDB, 18(11): XXX-XXX, 2025.
doi:XX.XX/XXX.XX

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

Jing Zhang and Tieying Zhang are the corresponding authors.

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/RUCKBReasoning/OmniSQL.

1 INTRODUCTION

Text-to-SQL translates natural language (NL) questions into exe-
cutable SQL queries, enabling non-experts to interact with databases
effectively [1, 40, 47]. This capability supports a wide range of data-
centric applications and has garnered significant research interest
from both natural language processing (NLP) and database commu-
nities [18, 21, 24, 42–44, 59].
State-of-the-Art: Strengths and Limitations. Recent advance-
ments in large language models (LLMs) have driven significant
progress in the text-to-SQL field. State-of-the-art (SOTA) solu-
tions [22, 58] often employ multi-agent collaborative frameworks,
where specialized agents tackle distinct sub-tasks such as schema
linking, text-to-SQL generation, SQL refinement, and SQL selection.
Among these, text-to-SQL generation remains the core component.
Current approaches to this component mainly rely on LLMs and
can be broadly categorized into two paradigms: prompting-based
and fine-tuning-based.

Prompting-based methods leverage powerful LLMs through care-
fully crafted prompts, often relying on closed-source models ac-
cessed via APIs. In contrast, fine-tuning-based methods focus on
training LLMs on existing text-to-SQL datasets, such as Spider [87]
and BIRD [45], to adapt them for the task. While both approaches
have demonstrated impressive benchmark performance, they face
notable limitations in real-world applications. Prompting-based
methods suffer from challenges such as high usage costs, data pri-
vacy concerns, and limited control over model behavior due to
their reliance on calling APIs. On the other hand, fine-tuning-based
methods often struggle with generalizability to complex problems
or domain-specific databases, as publicly available datasets provide

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:XX.XX/XXX.XX

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/RUCKBReasoning/OmniSQL
https://doi.org/XX.XX/XXX.XX


limited coverage of real-world scenarios. For instance, experiments
reveal that Qwen2.5-Coder-7B-Instruct [30], fine-tuned on the train-
ing sets of Spider and BIRD, performs well on their development
sets (which share the similar distribution as the training data) but
achieves only 43.8% and 31.4% execution accuracy on out-of-domain
datasets, ScienceBenchmark [88] and EHRSQL [38], respectively. In
comparison, zero-shot prompting GPT-4-Turbo [54] achieves signif-
icantly higher execution accuracy of 59.2% and 43.1%, highlighting
the limited generalizability of current fine-tuning approaches.

To address these limitations, enhancing the text-to-SQL capabili-
ties of open-source LLMs through large-scale, diverse, high-quality
training data presents a promising direction. Such efforts could
improve both the performance and generalizability of open-source
models. Moreover, open-source models can be deployed locally,
making text-to-SQL systems more cost-effective, data-secure, and
adaptable to modifications, thereby overcoming the challenges as-
sociated with closed-source LLMs. However, acquiring large-scale
data through human annotation is often infeasible. To mitigate this,
several early data augmentation methods [28, 76, 80, 83] have been
proposed to expand existing text-to-SQL datasets. Unfortunately,
most of these methods focus on generating data samples that conform
to the distribution of existing datasets, resulting in limited diversity,
quality, and scalability. Additionally, many approaches require exten-
sive human effort to define complex templates or grammars, further
constraining their practicality.
Our Proposal. To overcome these limitations, we propose a novel
text-to-SQL data synthesis framework that distinguishes itself from
existing data augmentation methods by offering the following key
advantages: (1) Automatic: The entire synthesis process requires
minimal to no human intervention. (2) Scalable: The framework
can generate a large scale of diverse, high-quality data samples, en-
suring coverage across a wide range of domains. (3) Realistic: The
synthesized data aligns with real-world user needs and scenarios.
Challenges and Solutions. Designing an automatic, scalable, and
realistic data synthesis framework is a non-trivial task. The pri-
mary challenge lies in ensuring automation and scalability while
maintaining the quality and diversity of the generated data. To
address this, we introduce a progressive pipeline that decouples
the synthesis process into several simpler, manageable steps. Each
step is automated using LLMs, minimizing human intervention. (1)
The pipeline begins by leveraging web tables to synthesize realistic
databases. Specifically, given a web table, the LLM is prompted to
infer a plausible database business scenario associated with the
table and generate a corresponding database. This synthetic data-
base includes multiple relational tables with primary and foreign
key relationships. Each relational table contains metadata such as
the table name, description, column names, data types, column de-
scriptions, and two example data rows. With millions of web tables
available online [17], this approach ensures scalability across a wide
range of domains. (2) Next, we generate meaningful SQL queries
based on the synthesized databases by providing the LLM with
the database information. (3) Then, we employ a back-translation
technique to convert these SQL queries into semantically equiva-
lent natural language questions. This technique, widely adopted in
prior studies [4, 25, 28, 76, 80, 88, 91], could guarantee the quality of
the synthetic <question, SQL query> pairs because converting SQL
queries into natural language is inherently more accurate and less

ambiguous than the reverse. (4) Finally, to bridge the gap between
questions and SQL queries, we draw inspiration from chain-of-
thought (CoT) reasoning [35, 78]. For each synthetic text-to-SQL
data, we generate a step-by-step CoT solution that details the in-
termediate reasoning steps required to construct the SQL query
from the question and the database. This not only enhances the
interpretability of the synthetic data but also provides high-quality
training signals for text-to-SQL models.

The second challenge is ensuring that the synthetic data aligns
with real-world user needs and scenarios. A robust text-to-SQL
model must accommodate a wide range of SQL queries, from simple
to highly complex, reflecting both basic data retrieval and advanced
data analysis requirements. To meet this demand, we define four
levels of SQL complexity: simple, moderate, complex, and highly
complex. During the SQL synthesis process, we select a complexity
level and instruct the LLM to generate SQL queries that correspond
to that level. Moreover, real-world users often express their ques-
tions in diverse linguistic styles, ranging from formal and explicit
to vague and metaphorical. To address this variability, we identify
nine common natural language styles: formal, colloquial, impera-
tive, interrogative, descriptive, concise, vague, metaphorical, and
conversational.When translating SQL queries into natural language
questions, we adopt a specific style and guide the LLM to generate
questions consistent with that style. This approach ensures that
the synthetic data can accurately capture the various ways users
might express their questions in real-world scenarios.
Validation. To validate the effectiveness of our proposed frame-
work, we introduce SynSQL-2.5M, the first million-scale text-to-
SQL dataset. Specifically, SynSQL-2.5M contains 2,544,390 text-
to-SQL data samples, each represented as a quadruple of <data-
base, question, SQL query, CoT solution>, spanning 16,583 distinct
synthetic databases. Extensive statistics reveal that SynSQL-2.5M
demonstrates high diversity and complexity compared to existing
text-to-SQL datasets. We further evaluate its quality across four
dimensions: database, question, SQL query, and data sample. When
compared to the widely adopted human-labeled dataset BIRD [45],
SynSQL-2.5M outperforms in nearly all criteria, underscoring the
reliability and effectiveness of our data synthesis pipeline.

Building on SynSQL-2.5M, we develop OmniSQL, a powerful
open-source text-to-SQL model available in three scales: 7B, 14B,
and 32B.We evaluateOmniSQL across nine datasets, including three
standard datasets (Spider development and test sets [87] and BIRD
development set [45]), three domain-specific datasets (Spider2.0-
SQLite [39], ScienceBenchmark [88], and EHRSQL [38]), and three
robustness datasets (Spider-DK [20], Spider-Syn [19], and Spider-
Realistic [12]). The results indicate that OmniSQL achieves state-
of-the-art average performance across these datasets, matching or
outperforming leading open-source LLMs (e.g., DeepSeek-V3 [10]
and Qwen2.5-72B-Instruct [81]) and advanced closed-sourcemodels
(e.g., GPT-4-Turbo [54] and GPT-4o [56]), despite its smaller model
size. Our contributions are summarized as follows:

• Data Synthesis Framework. We propose an automatic and
scalable framework for text-to-SQL data synthesis, addressing
the generation of realistic databases, complexity-aware SQL
queries, stylized natural language questions, and reliable chain-
of-thought solutions.



• Synthetic Dataset and Fine-tuned Multi-scale Model.We in-
troduce SynSQL-2.5M, the first million-scale text-to-SQL dataset
including 2,544,390 diverse and high-quality data samples. Using
SynSQL-2.5M, we fine-tune OmniSQL, a new text-to-SQL model
available in three scales: 7B, 14B, and 32B.

• New SOTA Text-to-SQL Performance. Extensive experiments
demonstrate that OmniSQL achieves new state-of-the-art perfor-
mance in text-to-SQL tasks, surpassing leading open-source and
closed-source LLMs with significantly fewer parameters, high-
lighting the effectiveness of our data synthesis framework. We
have open-sourced our code, datasets, and models on GitHub1
to facilitate further research in text-to-SQL.

2 RELATED WORK

2.1 Text-to-SQL

In the field of text-to-SQL, early studies typically employ an explicit
encoder-decoder architecture. The encoder encodes the database
schema and the question, while the decoder generates the cor-
responding SQL query based on the encoded information. Some
studies enhance encoders by incorporating graph relation informa-
tion [6, 7, 44, 75] or by leveraging pre-training techniques [12, 84,
85]. Other approaches focus on improving decoders by introducing
grammar constraints, which help reduce syntax errors in generated
SQL queries and thus improve the model’s accuracy [69, 77].

With the rapid advancement of sequence-to-sequence (seq2seq)
models, the text-to-SQL task has been transferred to a seq2seq
modeling task. Many studies have focused on fine-tuning T5 [62]
for this purpose [42, 44, 60, 63, 69]. Recently, the emergence of large
language models (LLMs) such as GPT-4 [53, 56] and Gemini [2, 66]
has once again transformed the text-to-SQL domain. By leveraging
these powerful LLMs, researchers can decompose the complex text-
to-SQL task into simpler sub-tasks, including schema linking, text-
to-SQL generation, SQL refinement, and SQL selection [21, 22, 58, 59,
74]. Each sub-task can be managed by an LLM-based agent using
prompt engineering or fine-tuning techniques. Unlike previous
studies that design complex multi-agent frameworks, this paper
focuses on improving the core capability of these frameworks—text-
to-SQL generation—using large-scale synthetic data.

2.2 Data Augmentation for Text-to-SQL

To address the limited coverage of publicly available datasets, nu-
merous studies have proposed data augmentation methods to gen-
erate additional training data (i.e., <question, SQL query> pairs) that
alignwith the distribution of existing datasets. Many approaches [25,
34, 43, 76, 80, 88, 91] employ a “SQL-to-question” pipeline, where
SQL templates or grammars are used to generate SQL queries,
which are then translated into natural language questions using
neural network models. This approach ensures high-quality syn-
thetic <question, SQL> pairs, as converting SQL to natural lan-
guage is generally easier due to the flexibility of natural language.
In these methods, SQL templates are often extracted from existing
datasets [25, 28, 43, 91], while abstract syntax tree grammars typ-
ically require expert design [76, 80, 88]. However, SQL templates

1https://github.com/RUCKBReasoning/OmniSQL

limit diversity, and grammar-based methods are labor-intensive,
making both of them difficult to scale.

Alternatively, some studies adopt a “question-to-SQL” pipeline,
where questions are first generated and then translated into SQL
queries using off-the-shelf text-to-SQL models [83]. However, in-
accuracies in used text-to-SQL models often result in noisy data.
Other methods use question-to-SQL template pairs, either manu-
ally crafted or extracted from datasets, to generate new samples by
filling slot mappings [79, 85, 86]. While effective, these approaches
suffer from limited diversity and unnatural question generation.

The most closely related work is Sense [82], which employs
GPT-4 to directly synthesize new data samples through carefully
designed prompts. Specifically, Sense instructs GPT-4 to first gener-
ate a database, then formulate a question based on that database,
and finally produce the corresponding SQL query for the question.
However, Sense’s reliance on expensive GPT-4 limits its scalabil-
ity and cost-effectiveness. In contrast, our framework decouples
the synthesis process into simpler, more controllable steps, en-
abling the use of less powerful yet open-source LLMs. As a result,
our approach is highly cost-effective, particularly when scaling to
million-level or larger synthesis requirements. Additionally, Sense’s
“question-to-SQL” design risks generating incorrect SQL queries for
the previously synthesized questions, whereas our adopted “SQL-
to-question” strategy ensures higher-quality synthetic data. Beyond
these advantages, our method also synthesizes CoT solutions, fur-
ther enhancing the interpretability of the generated data.

3 DATA SYNTHESIS FRAMEWORK

3.1 Overview

As illustrated in Figure 1, our data synthesis framework adopts a
progressive pipeline comprising four key steps: web table-driven
database synthesis, complexity-aware SQL query generation, styl-
ized natural language question synthesis, and chain-of-thought so-
lution synthesis. Each step leverages large language models (LLMs)
in conjunction with automated pre-processing and post-processing
strategies to ensure high-quality and diverse outputs, significantly
reducing the reliance on extensive human intervention.

The process begins with web tables, which are abundant on web-
sites and store structural data spanning a wide range of real-world
domains. Using these tables, we synthesize databases that emulate
realistic business scenarios. Next, based on synthetic databases,
we generate SQL queries of varying complexity levels and back-
translate them into natural language (NL) questions with diverse
language styles. Finally, for each synthetic <database, question, SQL
query> triplet, we produce a chain-of-thought (CoT) solution that
outlines the step-by-step reasoning process used to derive the SQL
query from the natural language question.

3.2 Web Table-Driven Database Synthesis

Developing robust text-to-SQL models requires fine-tuning on
diverse databases. However, real-world databases are scarce on
the internet because enterprise databases often contain sensitive
information. Despite this, we observe that tabular data is abun-
dant [5, 17, 31] and also reflects real-world scenarios for structured
data storage. This wealth of tabular data presents a unique oppor-
tunity to address the aforementioned challenges. Leveraging this,

https://github.com/RUCKBReasoning/OmniSQL


https://github.com/RUCKBReasoning/OmniSQL/blob/main/data_synthesis/database_synthesis/prompt_templates/schema_prompt.txt
https://github.com/RUCKBReasoning/OmniSQL/blob/main/data_synthesis/database_synthesis/prompt_templates/schema_prompt.txt
https://github.com/RUCKBReasoning/OmniSQL/blob/main/data_synthesis/database_synthesis/prompt_templates/schema_prompt.txt


highly complex—and instruct the LLM to generate SQL queries that
align with a specified level. Additionally, we provide the LLM with
advanced SQL functions and sampled database values to ensure the
generated queries are meaningful and realistic. Furthermore, since
many real-world natural language questions seek specific items
(e.g., a statistical number or a person’s name), the corresponding
SQL queries often return a limited number of columns. To reflect
this, we impose a constraint on the number of returned columns
during SQL query synthesis. Specifically, the prompt for SQL query
synthesis includes the following components:
• Task Instruction: Directs the LLM to generate meaningful SQL

queries that meet real-world data analysis needs.
• Database Schema: Includes the CREATE TABLE statements for

all relational tables in the given database.
• Advanced SQL Functions: Randomly samples a few advanced

SQL functions supported by the database engine, allowing the
LLM to incorporate these functions in its queries when appropri-
ate3. Each SQL function is presented with its name and a detailed
description to help the LLM properly use it.

• Database Values: Randomly samples a few columns along with
their stored values to assist the LLM in generating meaningful
and contextually relevant predicates.

• SQL Complexity: Randomly samples a complexity level from
[“Simple”, “Moderate”, “Complex”, “Highly complex”]. Each level
is defined by specific criteria along with an example SQL query.

• ColumnSelectionConstraint: Specifies the number of columns
the synthetic SQL query must select. This value is sampled from a
geometric distribution with a success probability of 𝑝 = 0.6. This
distribution is chosen because it naturally biases the sampling
toward smaller numbers, reflecting the common text-to-SQL sce-
nario where SQL queries typically select a few columns.
In the post-processing stage, we apply several quality control

measures. First, we filter out non-SELECT queries using pre-defined
rules and execute the remaining queries on the synthetic databases
to eliminate those with syntax errors or that result in timeouts.
Then, to ensure diversity, we extract SQL templates4 and retain
only one query per template. For example, if the LLM generates
“SELECT name FROM school WHERE age > 18” and “SELECT name
FROM school WHERE age > 55”, which share the same template,
only one of these queries is retained in the final dataset.

3.4 Stylized NL Question Synthesis

After synthesizing SQL queries, the next step is to translate them
into semantically equivalent natural language (NL) questions. Ex-
isting studies have primarily focused on ensuring the semantic
accuracy of synthetic questions by introducing various novel tech-
niques, such as hierarchical generation [80], intermediate repre-
sentations [28], and pointer-decoder networks [91]. In this work,
we argue that linguistic diversity is equally critical for develop-
ing robust text-to-SQL models, as real-world users express their
questions in a wide range of styles. This is further supported by

3This paper focuses on the SQLite engine, as many text-to-SQL benchmarks are based
on it. The functions supported by SQLite, including names and descriptions, can be
found in the official documentation: https://www.sqlite.org/lang_corefunc.html.
4Templates are extracted by masking only the values in SQL queries. For example,
given the SQL query “SELECT name FROM school WHERE age > 18”, its template is
“SELECT name FROM school WHERE age > [MASK]”.

recent robustness benchmarks [8, 12, 19], which reveal that many
text-to-SQL models struggle with linguistic perturbations, such
as synonym substitution or sentence paraphrasing. Therefore, we
advocate for a dual focus on both semantic accuracy and linguistic
diversity during question synthesis.

To enhance linguistic diversity, we define nine language styles
commonly observed in real-world user questions: formal, colloquial,
imperative, interrogative, descriptive, concise, vague, metaphorical,
and conversational. The first six styles (formal, colloquial, impera-
tive, interrogative, descriptive, and concise) reflect scenarios where
users express their intentions clearly but with variations in tone. In
contrast, the vague and metaphorical styles represent cases where
users employ ambiguous vocabulary or figurative language, of-
ten requiring external knowledge for interpretation. Finally, the
conversational style simulates multi-turn dialogues, where users
iteratively clarify their intentions. This style is particularly relevant
in real-world applications, as users may not always express their
needs directly, necessitating follow-up questions from the model.
Examples illustrating these language styles can be found in our
open-source GitHub repository5.

We note that DBPal [79] also considers linguistic diversity during
its question synthesis process. However, it relies on an off-the-shelf
paraphrasing database [57] to replace synonyms in existing ques-
tions, which limits its ability to cover the full range of styles com-
monly used by users. Moreover, this simple synonym replacement
mechanism may result in unnatural questions, further highlighting
the need for a more robust approach to achieve linguistic diversity.

Specifically, the prompt for synthesizing natural language ques-
tions consists of the following components:
• Task Instruction: Directs the LLM to first generate an expla-

nation of the provided SQL query and then translate it into a
natural language question.

• SQL Query: The SQL query to be translated.
• SQL-related Column Information: Includes the names and de-

scriptions of columns referenced in the SQL query. This aids the
LLM in generating semantically accurate questions, particularly
when column names are ambiguous, abbreviated, or coded.

• Desired Language Style: A randomly sampled style from the
nine predefined styles, each accompanied by a description and
an example question. For the formal, colloquial, imperative, in-
terrogative, descriptive, and concise styles, the LLM generates
stylized questions directly. For the vague and metaphorical styles,
the LLM additionally provides the external knowledge underly-
ing the question. For the conversational style, the LLM generates
a multi-turn dialogue between <User> and <Assistant>.
For each synthetic SQL query, we generate multiple candidate

questions using the LLM. To select the most semantically accurate
question, we introduce a semantic consistency selector module,
inspired by [68, 88]. Specifically, we utilize Sentence Transform-
ers [67] to embed the candidate questions into vector representa-
tions6. For each candidate question, we compute its average cosine
similarity with all other candidates. The question with the highest

5https://github.com/RUCKBReasoning/OmniSQL/blob/main/assets/example_
questions.png
6We use the “all-mpnet-base-v2” model for sentence embedding due to its superior
embedding quality. Further details are available at https://sbert.net/docs/sentence_
transformer/pretrained_models.html.

https://www.sqlite.org/lang_corefunc.html
https://github.com/RUCKBReasoning/OmniSQL/blob/main/assets/example_questions.png
https://github.com/RUCKBReasoning/OmniSQL/blob/main/assets/example_questions.png
https://sbert.net/docs/sentence_transformer/pretrained_models.html
https://sbert.net/docs/sentence_transformer/pretrained_models.html


average similarity is selected, as it lies closest to the semantic center
of the candidate set. By combining the pre-defined language styles
with the semantic consistency selector, we enhance both the lin-
guistic diversity and semantic accuracy of the synthetic questions.

3.5 Chain-of-Thought Solution Synthesis

Chain-of-thought (CoT) reasoning has demonstrated remarkable
success across various challenging tasks [35, 78]. By decomposing
complex problems into smaller, manageable steps, this approach
enables LLMs to tackle intricate tasks more effectively, improving
both accuracy and interpretability. Building on this, we augment the
synthetic <database, question, SQL query> triplets by generating
CoT solutions that explicitly outline the reasoning process behind
constructing the SQL query from the question. The prompt for
synthesizing CoT solutions consists of the following components:
• Task Instruction: Directs the LLM to generate a step-by-step

CoT solution using the provided information.
• Database Schema: Includes the CREATE TABLE statements for

all relational tables in the database.
• NL Question and SQL Query Pair: The natural language ques-

tion and its corresponding SQL query.
A typical CoT solution begins by analyzing the question to iden-

tify the key information required. It then determines the relevant
tables, columns, and filtering criteria needed to retrieve the desired
data. Finally, it constructs the SQL query step by step, incorporating
necessary joins, filters, aggregations, groupings, and other opera-
tors, culminating in the complete SQL query as the final answer.

Interestingly, in our preliminary experiments, we observe that
the SQL queries generated by the synthetic CoT sometimes differ
from the original ones. Upon closer examination, we find that CoT-
generated SQL queries often better align with the questions com-
pared to the original SQL queries. This improvement arises because
the original <database, question, SQL query> triplets occasionally
contain minor issues, such as unnecessary column selections, and
incorrect join paths. The CoT synthesis process allows the LLM to
identify and correct these issues during step-by-step reasoning, re-
sulting in more accurate and refined SQL queries. This observation
also aligns with prior research showing that LLMs excel at detecting
and resolving minor errors in predicted SQL queries [22, 58, 70].
Thus, incorporating CoT not only provides detailed solutions but
also enhances the overall quality of the synthetic data.

To enhance the diversity and reliability of synthetic CoT solu-
tions, we generate multiple candidate CoT solutions for each syn-
thetic <database, question, SQL query> triplet. To select the most
reliable CoT solution, we extract SQL queries from these candidates
and perform a majority vote. Specifically, we group candidates
based on the execution results of their SQL queries. The final CoT
solution is selected from the group with the most votes.

4 SYNSQL-2.5M: A MILLION-SCALE DATASET

To demonstrate the effectiveness of our data synthesis framework,
we introduce SynSQL-2.5M —the first million-scale text-to-SQL
dataset, entirely generated automatically by LLMs. SynSQL-2.5M
contains 2,544,390 high-quality text-to-SQL samples, each repre-
sented as a <database, question, SQL query, CoT solution> quadru-
ple. The dataset spans 16,583 synthetic databases across a wide

range of real-world domains, including social media sentiment
analysis, product inventory management, movie analytics, galaxy
morphological analysis, and more.

To mitigate potential bias introduced by the habits of specific
LLMs, we employ multiple LLMs during the data synthesis pro-
cess, with each model responsible for generating a portion of the
data. A key advantage of our framework is its decomposition of the
text-to-SQL data synthesis task into four simple and manageable
sub-tasks. Each sub-task can be effectively handled by relatively
smaller, open-source LLMs, which are locally deployable and cost-
efficient. This design eliminates the need for heavy reliance on
expensive closed-source LLMs, as seen in prior studies [82]. In prac-
tice, we utilize models frommultiple open-source model families, in-
cluding Llama3.1 [16] (Meta-Llama-3.1-8B/70B-Instruct), Deepseek
Coder [9, 26] (DeepSeek-Coder-6.7B/33B-Instruct, DeepSeek-Coder-
V2-Lite-Instruct), Qwen2.5 [81] (Qwen2.5-7B/14B/32B/ 72B-Instruct),
and Qwen2.5 Coder [30] (Qwen2.5-Coder-7B/14B/32B-Instruct).
Larger models are assigned a greater share of the synthesis work-
load to ensure data quality.

To construct SynSQL-2.5M, we sample 0.1% of data from a tabu-
lar corpus, TabLib [17], resulting in approximately 1,319,561 web
tables. Since these tables are sourced from websites, they often
contain incomplete, redundant, or irrelevant content, which could
compromise the quality of synthetic databases. To address this,
we design a systematic filtering pipeline with the following steps:
(1) Language Filtering: Non-English tables are removed to align
with the English benchmarks. (2) Size Filtering: Tables with fewer
than 5 columns or 5 rows are eliminated. (3) Deduplication: Similar
tables are removed based on table headers. (4) Semantic Evaluation:
Qwen2.5-72B-Instruct [81] is used to assess and filter out tables with
insufficient semantic richness. After filtering, 19,935 high-quality
web tables are retained. During the database synthesis process,
16,583 tables are successfully expanded into structurally complete
databases, despite encountering parsing errors in LLM-generated
responses and database creation failures. The initially generated
databases contain an average of 9.15 tables per database and 4.86
columns per table. After enhancement, these averages increase to
10.15 tables and 7.3 columns, respectively, resulting in databases
with real-world complexity. All databases are hosted and managed
using SQLite. In the SQL synthesis phase, we generate 300 SQL
queries for each synthetic database, producing approximately 5
million synthetic SQL queries. After applying quality and diversity
controls, around 2.5 million queries are retained. For the natural
language question and CoT synthesis phase, we sample 8 responses
from LLMs for each input prompt, using a temperature of 0.8.

In this section, we provide a comprehensive statistical analysis
of SynSQL-2.5M, highlighting its quality, diversity, and complex-
ity through comparisons with three widely-used standard datasets
(WikiSQL [92], Spider [87], and BIRD [45]) and two domain-specific
datasets (ScienceBenchmark [88] and EHRSQL [38]). Additionally,
we evaluate the quality of SynSQL-2.5M using the “LLM-as-a-
judger” approach, further underscoring its high overall quality.

4.1 Overall Statistics

Table 1 provides a comparative overview of SynSQL-2.5M and other
text-to-SQL datasets. As the statistics demonstrate, SynSQL-2.5M is





https://github.com/RUCKBReasoning/OmniSQL/tree/main/GPT_evaluation/prompts
https://github.com/RUCKBReasoning/OmniSQL/tree/main/GPT_evaluation/prompts


of OmniSQL. Specifically, the input sequence consists of the data-
base schema and the natural language question. Following previous
studies [65, 82], the database schema is formatted as CREATE TABLE
statements. Additionally, inspired by prior work [43, 70], we enrich
the input with three supplementary elements: column descriptions,
representative values, and question-relevant values, which are in-
cluded as comments for each column.

Specifically, column descriptions assist the LLM in identifying the
correct columns referenced in the question, particularly when col-
umn names are ambiguous (e.g., abbreviations). Representative val-
ues for each column inform the LLM about the format of stored val-
ues, aiding in the use of advanced functions like CONCAT, STRFTIME,
and SUBSTR in the generated SQL query. In practice, we select two
distinct values for each column. Finally, following [43], we extract
question-relevant values from the database, which can help the
LLM to generate accurate predicates, especially when the question
mentions specific database values.

The output sequence is the CoT solution, which includes step-
by-step reasoning process and the final SQL query. However, since
Spider and BIRD only provide gold SQL queries without CoT solu-
tions, we enhance their training sets by synthesizing CoT solutions
using the technique described in Section 3.5.

5.2 Supervised Fine-Tuning

We fine-tune the LLM using a conditional next token prediction
loss, as described in [61]. The loss function is defined as follows:

Loss = −E(𝑥,𝑦)∼𝐷 [∑𝑡 log 𝑃𝜃 (𝑦𝑡 | 𝑥,𝑦<𝑡 )] , (2)

where𝐷 represents the training set, 𝑥 and𝑦 are the input and output
sequences, respectively, 𝜃 denotes the trainable parameters of the
LLM,𝑦𝑡 is the 𝑡-th token in the output sequence, and𝑦<𝑡 represents
all preceding output tokens. OmniSQL is optimized to predict the
CoT solution based on the provided database information and the
corresponding question.

6 EXPERIMENTS

In this section, we comprehensively evaluate the performance of
OmniSQL by comparing it with leading LLMs.

6.1 Experimental Setup

6.1.1 Evaluation Datasets. Standard Benchmarks. Spider [87]
and BIRD [45] are widely used in prior text-to-SQL studies to eval-
uate the cross-domain text-to-SQL capabilities of models. Cross-
domain refers to the fact that the databases in the different data
splits (train/dev/test) have no overlap. For Spider, we use its dev
and test sets, containing 1,034 and 2,147 data samples, respectively.
For BIRD, due to the hidden nature of its test set, we only use its
dev set, which consists of 1,534 data samples.
Challenging Domain-specific Benchmarks. Spider2.0 [39] is
a new challenging benchmark focusing on the real-world enter-
prise text-to-SQL scenario. It contains highly complex SQL queries
(often exceeding 100 lines), extremely long contexts (e.g., large
database schemas and massive external knowledge), and multi-
ple SQL dialects (e.g., BigQuery, Snowflake, SQLite, and DuckDB).
Since SynSQL-2.5M is constructed using the SQLite dialect, we
extract the SQLite portion of Spider2.0 for evaluation, containing

135 data samples. We name this subset as Spider2.0-SQLite10. Ad-
ditionally, ScienceBenchmark [88]11 and EHRSQL [38]12 are two
challenging benchmarks designed to evaluate text-to-SQL models
in professional database domains. Specifically, ScienceBenchmark
includes databases from the domains of research policymaking,
astrophysics, and cancer research. EHRSQL, on the other hand,
focuses on medical text-to-SQL applications. ScienceBenchmark
and EHRSQL contain 299 and 1,008 evaluation samples, respec-
tively. Since OmniSQL does not use any training data from these
domain-specific benchmarks during fine-tuning, this evaluation
can be treated as a zero-shot domain generalization scenario.
Robustness Benchmarks. Spider-DK [20], Spider-Syn [19], and
Spider-Realistic [12] are three widely-adopted robustness bench-
marks. Spider-DK tests the model’s ability to understand implicit
domain knowledge in natural language questions. Spider-Syn and
Spider-Realistic modify questions in Spider’s development set to
replace explicit mentions of column names with their synonyms.
These designs can mimic real-world users’ questions, enabling the
evaluation of model robustness in practical text-to-SQL applica-
tions. Specifically, Spider-DK, Spider-Syn, and Spider-Realistic offer
535, 1,034, and 508 samples for evaluation.

6.1.2 Evaluation Metrics. Following prior work, we use execution
accuracy (EX) [87] and test-suite accuracy (TS) [90] as our evalua-
tion metrics. EX measures whether the predicted SQL queries yield
the same execution results as the gold SQL queries on a single data-
base. TS extends EX’s evaluation to multiple test-suite databases.
Notably, only the Spider (dev), Spider-Syn, and Spider-Realistic
datasets provide test-suite databases; therefore, these datasets are
evaluated using TS, while the others are evaluated using EX. For
both metrics, higher values indicate better performance.

6.1.3 Implementation Details. OmniSQL-7B/14B/32B is built on the
Qwen2.5-Coder-7B/14B/32B-Instruct models, a series of advanced
code language models pre-trained and instruction-tuned on 92 pro-
gramming languages. Specifically, OmniSQL-7B and OmniSQL-14B
are fully fine-tuned, while OmniSQL-32B is fine-tuned using a pa-
rameter efficient technique, low-rank adaptation (LoRA) [27], due
to limited GPU computational resources. For LoRA, we set 𝑟 = 256
and 𝛼 = 512, integrating adapters into the q_proj, k_proj, and
v_proj layers of the model, while keeping the original weights
unchanged. We use the AdamW optimizer [48] with parameters
𝛽1 = 0.9, 𝛽2 = 0.95, and 𝜖 = 10−8 to optimize the training objective.
The peak learning rates are set to 2𝑒−5, 4𝑒−6 and 2𝑒−4 for Om-
niSQL-7B, OmniSQL-14B, and OmniSQL-32B, respectively. We use
a learning rate schedule with a linear warmup for the initial 5% of
training, followed by cosine decay to 10% of the peak rate. In addi-
tion, the batch size, number of epochs, context length, weight decay,
and gradient clipping are uniformly set to 512, 2, 8192, 0.1, and 1.0,

10Our proposed data synthesis method can generate data for most mainstream SQL
dialects (e.g., PostgreSQL, MySQL, SQL Server, BigQuery, etc.) because LLMs largely
have seen these dialects in their pre-training corpora. We select SQLite as the default
for this study because many classical text-to-SQL benchmarks use SQLite to host their
databases, simplifying database deployment.
11The databases provided by ScienceBenchmark are originally hosted in PostgreSQL.
We manually convert them to SQLite to facilitate evaluations.
12Many natural language questions in EHRSQL are unanswerable and several SQL
queries return empty execution results. We remove these data samples from EHRSQL
to ensure a consistent and reliable evaluation.



respectively. To optimize GPU memory usage during training, we
leverage the DeepSpeed-Zero framework [64] with bfloat16 mixed
precision. In practice, training OmniSQL-7B/14B/32B requires ap-
proximately 6, 12, and 20 days, respectively, on a single machine
equipped with 8 NVIDIA A800-SXM4-80GB GPUs. We also pro-
vide LoRA versions of OmniSQL-7B and OmniSQL-14B (referred to
as OmniSQL-7B-LoRA and OmniSQL-14B-LoRA), using the same
LoRA hyperparameters as OmniSQL-32B. This enables a direct
comparison between full and LoRA-based fine-tuning approaches.

6.1.4 Environments. All experiments are conducted on two GPU
servers, each equipped with 8 NVIDIA A800-SXM4-80GB GPUs, an
Intel(R) Xeon(R) Platinum 8336C CPU, and 2TB of RAM. For LLM
training, we utilize PyTorch [3] 2.1.0 and DeepSpeed [64] 0.10.3,
while vLLM [36] 0.6.3 is employed for LLM inference.

6.1.5 Baselines. We compareOmniSQLwith a wide range of LLMs,
including closed-source LLMs such as GPT-4o-mini-2024-07-18 [55],
GPT-4o-2024-11-20 [56], and GPT-4-Turbo-2024-04-09 [54], as well
as open-source LLMs like DeepSeek-V3 [10], DeepSeek Coder [9,
26], Qwen2.5 [81], Qwen2.5 Coder [30], LLama-3.1 [16], Gran-
ite [52], Mixtral [33], OpenCoder [29], and Starcoder2 [49]. These
models span a wide range, from closed-source to open-source, small-
scale (6.7B) to large-scale (671B), general-purpose to code-specific,
and dense architectures to Mixture-of-Expert (MoE) designs. For
closed-source LLMs with undisclosed parameter sizes, their perfor-
mance serves as a point of reference rather than a direct comparison
under controlled parameter size conditions. Additionally, due to
the prohibitively high inference costs, reasoning models such as
OpenAI o1 [32] and DeepSeek-R1 [11] are not considered.

6.1.6 Inference Strategy. During LLM inference, we explore greedy
decoding and sampling. Greedy decoding, with a temperature of
0, ensures deterministic responses. Sampling, at a temperature of
0.8, introduces creativity and diversity, generating 8 candidate re-
sponses per sample. Then, we extract SQL queries from these candi-
dates and perform majority voting based on execution results. The
final response is selected from the group with the most votes.

6.2 Main Results

The evaluation results are shown in Table 4, where “Gre” and “Maj”
denote greedy decoding and majority voting results, respectively.
At each model scale, we compare OmniSQLwith open-source LLMs
of similar or larger size. Our findings are listed as follows:

Synthetic data significantly enhances the basemodel’s text-

to-SQL capabilities. A comparison between the Qwen2.5-Coder
models and OmniSQL demonstrates that fine-tuning with SynSQL-
2.5M leads to improved performance across most datasets. Specifi-
cally, under the greedy decoding strategy, OmniSQL-7B achieves
an average improvement of +8.4% (from 52.8% to 61.2%) over its
base model, Qwen2.5-Coder-7B-Instruct. Similarly, OmniSQL-14B
and OmniSQL-32B show average improvements of 2.9% (from 59.3%
to 62.2%) and 2.4% (from 60.8% to 63.2%) over their base models,
Qwen2.5-Coder-14B-Instruct and Qwen2.5-Coder-32B-Instruct, re-
spectively. Notably, OmniSQL-7B sets a new standard for 7B-scale
LLMs in this domain. Furthermore, OmniSQL-14B and OmniSQL-
32B represent the new state-of-the-art text-to-SQL capabilities.

OmniSQL consistently demonstrates leading performance

on standard benchmarks, including Spider (dev), Spider (test),

and BIRD (dev). Notably, OmniSQL-7B model attains an accuracy
of 87.9% (greedy decoding) on Spider’s test set, surpassing the best
publicly available method on Spider’s leaderboard13, DAIL-SQL +
GPT-4 + Self-Consistency (86.6%) [21], by 1.3%. Additionally, by
employing a simple majority voting strategy, OmniSQL’s perfor-
mance on the Spider test set improves to 88.9%, 88.3%, and 89.8%
for the 7B, 14B, and 32B model scales, respectively. In addition, we
observe that increasing the model scale does not yield consistent
performance gains on Spider. This is likely due to Spider being
a relatively simple benchmark, where smaller-scale but powerful
models already achieve near-optimal performance. In contrast, as
BIRD is more challenging than Spider, we can observe slight perfor-
mance improvements as the scale of OmniSQL increases. Notable,
OmniSQL-32B achieves 67.0% (major voting) accuracy on BIRD’s
development set, making it competitive with Distillery + GPT-4o
(67.2%) [51], which fine-tunes GPT-4o on BIRD’s training set.

OmniSQL demonstrates exceptional domain generaliza-

tion capabilities on domain-specific benchmarks, including

Spider2.0-SQLite, EHRSQL, and ScienceBenchmark. On the
most challenging benchmark, Spider2.0-SQLite, despite having lim-
ited model parameters, OmniSQL still shows comparable accuracy
to much larger models. Notably, for 7B-scale baseline LLMs, their
accuracy is only in the range from 0.7% to 3.7%, while OmniSQL-7B
achieves 10.4% (greedy decoding) accuracy, underscoring the po-
tential of smaller models to handle complex text-to-SQL problems.
Then, on EHRSQL and ScienceBenchmark, OmniSQL consistently
outperforms similar scale competitors andmatches the performance
of leading LLMs. Remarkably, on EHRSQL, which involves medical
domain databases, OmniSQL-32B achieves the best performance,
46.8% (major voting), outperforming GPT-4o (45.5% in major vot-
ing) by 1.3%. These results underscore OmniSQL’s capability to
generalize effectively across professional domain databases with-
out necessitating extensive domain-specific fine-tuning.

Interestingly, some open-source LLMs (e.g., Qwen2.5-Coder-32B-
Instruct and Meta-Llama-3.1-70B-Instruct) significantly outperform
closed-source LLMs on standard datasets. However, their perfor-
mance advantage diminishes on domain-specific datasets. This is
likely because these open-source models incorporated the training
sets of popular text-to-SQL benchmarks (e.g., Spider and BIRD)
during pre-training or fine-tuning. While this enables strong per-
formance on familiar datasets, their effectiveness decreases when
encountering out-of-domain datasets. In contrast,OmniSQL demon-
strates consistently strong performance, excelling on both standard
and domain-specific benchmarks.

OmniSQL demonstrates strong robustness on Spider-DK,

Spider-Syn, and Spider-Realistic. On Spider-Syn and Spider-
Realistic, OmniSQL outperforms baselines in most cases, demon-
strating robustness to synonym substitution—crucial for real-world
scenarios where users may use similar terms for tables or columns.
However, on Spider-DK, we note that OmniSQL-14B and OmniSQL-
32B underperform compared to their base models (i.e., Qwen2.5
Coder) on Spider-DK. We attribute this to the fact that Spider-DK

13Spider’s leaderboard can be found at https://yale-lily.github.io/spider. The top-ranked
method, MiniSeek, is excluded from comparisons as it is not publicly available.

https://yale-lily.github.io/spider


Table 4: Main results on 9 datasets (%). The best results are highlighted in bold. “DSC” is the abbreviation of “DeepSeek-Coder”.

LLM
Spider Spider BIRD Spider2.0- Science

EHRSQL
Spider- Spider- Spider-

Average
(dev) (test) (dev) SQLite Benchmark DK Syn Realistic

Gre Maj Gre Maj Gre Maj Gre Maj Gre Maj Gre Maj Gre Maj Gre Maj Gre Maj Gre Maj

Closed-source LLMs (as a reference)

GPT-4o-mini 70.4 71.0 82.4 83.7 58.8 61.5 5.9 7.4 51.8 52.5 37.9 43.1 73.3 74.4 60.5 61.6 64.4 66.7 56.2 58.0
GPT-4-Turbo 72.4 72.2 83.4 84.2 62.0 63.6 11.9 11.9 59.2 59.5 43.1 44.8 72.3 72.1 62.9 63.5 67.5 68.3 59.4 60.0
GPT-4o 70.9 70.7 83.2 84.9 61.9 64.0 14.8 15.6 55.5 56.2 44.9 45.5 72.9 73.5 59.6 62.3 66.5 66.7 58.9 59.9

Open-source LLMs (~7B)

DSC-6.7B-Instruct 63.2 63.2 70.5 73.2 43.1 48.0 3.0 3.7 40.8 45.5 28.6 33.9 60.9 64.1 49.9 51.7 58.7 58.9 46.5 49.1
Qwen2.5-Coder-7B-Instruct 73.4 77.1 82.2 85.6 50.9 61.3 1.5 2.2 45.2 51.2 24.3 36.9 67.5 73.6 63.1 66.9 66.7 70.5 52.8 58.4
Qwen2.5-7B-Instruct 65.4 68.9 76.8 82.6 46.9 56.4 1.5 1.5 38.5 47.5 20.9 32.1 63.7 71.8 54.2 60.0 56.7 63.6 47.2 53.8
OpenCoder-8B-Instruct 59.5 59.5 68.3 70.1 37.5 45.3 0.7 0.7 39.8 45.5 21.9 29.9 62.6 64.7 46.0 46.1 49.0 49.4 42.8 45.7
Meta-Llama-3.1-8B-Instruct 61.8 67.7 72.2 78.5 42.0 53.1 3.0 2.2 36.8 43.1 24.6 33.7 62.6 69.9 53.1 59.3 57.5 61.0 46.0 52.1
Granite-8B-Code-Instruct 58.5 59.2 64.9 68.6 27.6 32.5 0.7 0.7 29.4 31.4 16.0 22.6 50.7 54.4 45.0 46.8 48.8 49.4 38.0 40.6
Granite-3.1-8B-Instruct 58.3 65.0 69.8 75.3 36.0 47.2 1.5 1.5 36.8 47.5 19.6 32.3 60.0 66.5 47.7 53.8 46.5 57.1 41.8 49.6

OmniSQL-7B-LoRA 79.9 79.3 85.6 87.1 61.5 66.6 8.9 10.4 50.2 53.8 39.4 45.6 74.2 76.6 66.2 68.6 76.0 75.2 60.2 62.6
OmniSQL-7B 81.2 81.6 87.9 88.9 63.9 66.1 10.4 10.4 50.2 55.9 34.9 40.0 76.1 77.8 69.7 69.6 76.2 78.0 61.2 63.1

Open-source LLMs (14B-32B)

Qwen2.5-Coder-14B-Instruct 78.1 80.6 86.6 88.0 61.5 66.1 5.9 4.4 52.2 54.2 31.6 35.5 73.6 77.8 68.2 69.3 76.2 74.2 59.3 61.1
Qwen2.5-14B-Instruct 66.5 69.7 82.0 84.0 56.7 62.1 5.2 10.4 51.2 56.2 28.8 35.2 72.3 74.0 58.1 60.7 62.4 65.2 53.7 57.5
Starcoder2-15B-Instruct 65.8 67.6 73.0 74.0 38.5 42.6 0.7 3.0 25.8 29.8 16.8 22.6 66.5 68.2 49.4 52.4 56.7 61.0 43.7 46.8
DSC-V2-Lite-In. (16B, MoE) 68.0 70.0 77.9 79.6 44.6 51.8 3.0 5.2 39.1 45.8 23.9 32.4 63.7 67.5 55.6 57.9 61.8 64.0 48.6 52.7
Granite-20B-Code-Instruct 65.7 63.6 74.1 72.9 34.0 40.5 0.0 0.0 37.5 40.1 23.5 26.9 62.2 63.9 52.3 54.3 55.7 56.3 45.0 46.5
Codestral-22B 66.7 67.5 78.6 81.0 52.7 56.8 5.2 5.9 48.5 54.2 37.8 40.4 69.9 72.7 55.2 59.4 62.6 64.8 53.0 55.9

OmniSQL-14B-LoRA 80.9 80.9 88.0 87.8 63.6 65.6 11.1 11.9 58.5 55.2 38.6 44.4 76.4 76.8 70.7 72.1 77.0 79.1 62.8 63.8
OmniSQL-14B 81.4 82.0 88.3 88.3 64.2 65.9 10.4 13.3 56.9 56.9 39.9 43.6 72.9 74.8 69.0 72.0 76.4 78.5 62.2 63.9

Open-source LLMs (≥ 32B)

Qwen2.5-Coder-32B-Instruct 77.7 77.9 87.5 88.0 64.5 67.0 5.9 11.9 54.8 56.5 36.4 43.3 78.3 78.1 69.9 70.5 72.4 74.8 60.8 63.1
Qwen2.5-32B-Instruct 71.9 73.6 84.9 86.1 62.0 64.7 7.4 8.9 50.5 54.5 33.6 41.4 73.1 76.1 64.0 66.0 66.5 68.1 57.1 59.9
DSC-33B-Instruct 66.0 68.5 74.3 76.5 49.2 55.9 7.4 4.4 44.5 52.2 31.4 35.4 69.0 71.4 53.5 57.4 59.1 63.2 50.5 53.9
Granite-34B-Code-Instruct 69.9 70.0 74.4 77.0 33.8 41.3 0.7 1.5 40.1 40.1 23.8 29.9 64.7 70.7 55.6 59.8 60.0 59.6 47.0 50.0
Mixtral-8x7B-In. (47B, MoE) 54.4 59.0 67.8 74.1 35.3 42.9 2.2 2.2 29.4 34.8 21.5 31.4 55.3 60.4 42.1 48.8 48.0 53.3 39.6 45.2
Meta-Llama-3.1-70B-Instruct 72.3 71.0 84.3 85.9 65.1 67.4 3.0 3.7 55.2 56.2 37.4 41.4 75.1 78.1 61.7 63.1 64.0 65.6 57.6 59.2
Qwen2.5-72B-Instruct 73.9 72.1 84.0 85.7 60.3 63.6 9.6 14.8 52.8 58.2 35.0 41.2 76.4 77.6 64.1 64.3 70.1 68.5 58.5 60.7
DeepSeek-V3 (671B, MoE) 73.1 73.5 85.5 85.8 63.2 63.8 12.6 15.6 56.2 57.9 43.2 43.5 72.9 73.8 64.4 65.1 67.9 66.9 59.9 60.7

OmniSQL-32B 80.9 80.9 87.6 89.8 64.5 67.0 11.9 13.3 57.2 58.5 42.4 46.8 76.1 77.6 69.7 72.1 78.1 77.2 63.2 64.8

Table 5: Results of ablation studies (%). All scores are reported under greedy decoding. FT means “fine-tuning”.

Spider Spider BIRD Spider2.0- Science
EHRSQL

Spider- Spider- Spider-

(dev) (test) (dev) SQLite Benchmark DK Syn Realistic

Qwen2.5-Coder-7B-Instruct (base model) 73.4 82.2 50.9 1.5 45.2 24.3 67.5 63.1 66.7

FT w/ SynSQL-2.5M 74.6 83.5 59.9 9.6 48.5 37.2 71.6 61.6 70.3
FT w/ CoT-enhanced Spider + BIRD 80.3 86.6 59.6 5.9 49.5 26.0 72.0 70.0 76.4

FT w/ original Spider + BIRD 76.9 80.7 55.1 3.0 43.8 31.4 65.8 65.9 71.9
FT w/ SynSQL-2.5M + CoT-enhanced Spider + BIRD (OmniSQL-7B) 81.2 87.9 63.9 10.4 50.2 34.9 76.1 69.7 76.2

requires the text-to-SQL model to have a deep understanding of
implicit knowledge (e.g., commonsense knowledge) hidden in the
questions. The base models, trained on extensive corpora, likely
possess a stronger foundation in such knowledge, enabling them
to perform better on Spider-DK. These findings provide valuable
insights for further refining our data synthesis framework. For ex-
ample, we could introduce a new language style to guide the LLM in
synthesizing questions that incorporate commonsense knowledge.

Smaller models benefit more from full fine-tuning, while

LoRA is sufficient for larger models. For the 7B model, full
fine-tuning (OmniSQL-7B) outperforms the LoRA-based version
(OmniSQL-7B-LoRA) in most cases. However, this advantage be-
comes less pronounced with larger models (see OmniSQL-14B vs.
OmniSQL-14B-LoRA). We hypothesize that larger models possess

stronger inherent capabilities, so updating only a subset of parame-
ters with LoRA is sufficient for effective adaptation and may also
help mitigate overfitting compared to full fine-tuning.

Finally, it is important to note that OmniSQL’s performance
can be further enhanced by incorporating additional text-to-SQL
techniques, such as question rephrasing [41], schema linking [42,
59], SQL revision [22, 70], and SQL selection [37, 58]. Recent open-
source text-to-SQL frameworks like CHASE-SQL [58] and Alpha-
SQL [41] leverage multi-stage pipelines and integrate a range of
such techniques. In contrast, our work isolates and evaluates the
core text-to-SQL capability of a single LLM in a single-step inference
setup. To ensure fair evaluation, we focus on this setting and do
not compare OmniSQL directly with multi-stage frameworks.





REFERENCES

[1] Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. 1995. Natural
language interfaces to databases - an introduction. Nat. Lang. Eng. 1, 1 (1995),
29–81. https://doi.org/10.1017/S135132490000005X

[2] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Milli-
can, and et al. 2023. Gemini: A Family of Highly Capable Multimodal Mod-
els. CoRR abs/2312.11805 (2023). https://doi.org/10.48550/ARXIV.2312.11805
arXiv:2312.11805

[3] Jason Ansel, Edward Z. Yang, Horace He, Natalia Gimelshein, Animesh Jain,
Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta
Chauhan, Anjali Chourdia, and et al. 2024. PyTorch 2: Faster Machine Learning
Through Dynamic Python Bytecode Transformation and Graph Compilation. In
Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, ASPLOS 2024, La
Jolla, CA, USA, 27 April 2024- 1 May 2024. ACM, 929–947. https://doi.org/10.
1145/3620665.3640366

[4] Abhijeet Awasthi, Ashutosh Sathe, and Sunita Sarawagi. 2022. Diverse Paral-
lel Data Synthesis for Cross-Database Adaptation of Text-to-SQL Parsers. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022.
Association for Computational Linguistics, 11548–11562.

[5] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015.
TabEL: Entity Linking in Web Tables. In The Semantic Web - ISWC 2015 - 14th
International Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part I (Lecture Notes in Computer Science), Vol. 9366. Springer, 425–
441. https://doi.org/10.1007/978-3-319-25007-6_25

[6] Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng Hao. 2021. SADGA: Structure-
Aware Dual Graph Aggregation Network for Text-to-SQL. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. 7664–7676.

[7] Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. 2021.
LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-
Local Relations. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021. Association for Computational Linguistics, 2541–2555.
https://doi.org/10.18653/V1/2021.ACL-LONG.198

[8] Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexan-
der Hanbo Li, Wuwei Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien, Steve
Ash, and et al. 2023. Dr.Spider: A Diagnostic Evaluation Benchmark towards
Text-to-SQL Robustness. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

[9] DeepSeek-AI. 2024. DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source
Models in Code Intelligence. CoRR abs/2406.11931 (2024). https://doi.org/10.
48550/ARXIV.2406.11931 arXiv:2406.11931

[10] DeepSeek-AI. 2024. DeepSeek-V3 Technical Report. CoRR abs/2412.19437 (2024).
https://doi.org/10.48550/ARXIV.2412.19437 arXiv:2412.19437

[11] DeepSeek-AI. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. arXiv:2501.12948 [cs.CL]

[12] Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov,
Huan Sun, and Matthew Richardson. 2021. Structure-Grounded Pretraining for
Text-to-SQL. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021. Association for Computational Lin-
guistics, 1337–1350. https://doi.org/10.18653/V1/2021.NAACL-MAIN.105

[13] Till Döhmen, Radu Geacu, Madelon Hulsebos, and Sebastian Schelter. 2024.
SchemaPile: A Large Collection of Relational Database Schemas. Proc. ACM
Manag. Data 2, 3 (2024), 172.

[14] Till Döhmen, Madelon Hulsebos, Christian Beecks, and Sebastian Schelter. 2022.
GitSchemas: A Dataset for Automating Relational Data Preparation Tasks. In 38th
IEEE International Conference on Data Engineering Workshops, ICDE Workshops
2022, Kuala Lumpur, Malaysia, May 9, 2022. IEEE, 74–78.

[15] Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, and Xia Hu. 2022. Shortcut
Learning of Large Language Models in Natural Language Understanding: A
Survey. CoRR abs/2208.11857 (2022). https://doi.org/10.48550/ARXIV.2208.11857
arXiv:2208.11857

[16] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, and et al. 2024. The Llama 3 Herd of
Models. CoRR abs/2407.21783 (2024). https://doi.org/10.48550/ARXIV.2407.21783
arXiv:2407.21783

[17] Gus Eggert, Kevin Huo, Mike Biven, and Justin Waugh. 2023. TabLib: A Dataset
of 627M Tables with Context. CoRR abs/2310.07875 (2023). https://doi.org/10.
48550/ARXIV.2310.07875 arXiv:2310.07875

[18] Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. 2023. CatSQL:
Towards Real World Natural Language to SQL Applications. Proc. VLDB Endow.
16, 6 (2023), 1534–1547. https://doi.org/10.14778/3583140.3583165

[19] Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward,
Jinxia Xie, and Pengsheng Huang. 2021. Towards Robustness of Text-to-SQL
Models against Synonym Substitution. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021. Association for Computational
Linguistics, 2505–2515. https://doi.org/10.18653/V1/2021.ACL-LONG.195

[20] Yujian Gan, Xinyun Chen, and Matthew Purver. 2021. Exploring Underex-
plored Limitations of Cross-Domain Text-to-SQL Generalization. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 No-
vember, 2021. Association for Computational Linguistics, 8926–8931. https:
//doi.org/10.18653/V1/2021.EMNLP-MAIN.702

[21] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. Proc. VLDB Endow. 17, 5 (2024), 1132–1145. https:
//doi.org/10.14778/3641204.3641221

[22] Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang,
Shiqi Li, Wei Li, Yuntao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu
Li. 2024. XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-
SQL. CoRR abs/2411.08599 (2024). https://doi.org/10.48550/ARXIV.2411.08599
arXiv:2411.08599

[23] Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin
Xu, Wei Li, Yinghan Shen, Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and
Jian Guo. 2024. A Survey on LLM-as-a-Judge. CoRR abs/2411.15594 (2024).
https://doi.org/10.48550/ARXIV.2411.15594 arXiv:2411.15594

[24] Zihui Gu, Ju Fan, Nan Tang, Lei Cao, Bowen Jia, Sam Madden, and Xiaoyong Du.
2023. Few-shot Text-to-SQL Translation using Structure and Content Prompt
Learning. Proc. ACM Manag. Data 1, 2 (2023), 147:1–147:28. https://doi.org/10.
1145/3589292

[25] Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao,
Peng Chen, and Ming Zhou. 2018. Question Generation from SQL Queries
Improves Neural Semantic Parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018. Association for Computational Linguistics, 1597–1607.
https://doi.org/10.18653/V1/D18-1188

[26] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Y. Wu, and et al. 2024. DeepSeek-Coder: When
the Large Language Model Meets Programming - The Rise of Code Intelli-
gence. CoRR abs/2401.14196 (2024). https://doi.org/10.48550/ARXIV.2401.14196
arXiv:2401.14196

[27] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In The Tenth International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

[28] Yiqun Hu, Yiyun Zhao, Jiarong Jiang, Wuwei Lan, Henghui Zhu, Anuj Chauhan,
Alexander Hanbo Li, Lin Pan, Jun Wang, Chung-Wei Hang, Sheng Zhang, Jiang
Guo, and et al. 2023. Importance of Synthesizing High-quality Data for Text-to-
SQL Parsing. In Findings of the Association for Computational Linguistics: ACL
2023, Toronto, Canada, July 9-14, 2023. Association for Computational Linguistics,
1327–1343. https://doi.org/10.18653/V1/2023.FINDINGS-ACL.86

[29] Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, Yang Xu,
J. Yang, J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, and et al.
2024. OpenCoder: The Open Cookbook for Top-Tier Code Large Language
Models. CoRR abs/2411.04905 (2024). https://doi.org/10.48550/ARXIV.2411.04905
arXiv:2411.04905

[30] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Kai Dang, An Yang, and et al. 2024. Qwen2.5-Coder
Technical Report. CoRR abs/2409.12186 (2024). https://doi.org/10.48550/ARXIV.
2409.12186 arXiv:2409.12186

[31] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. GitTables: A Large-
Scale Corpus of Relational Tables. Proc. ACM Manag. Data 1, 1 (2023), 30:1–30:17.
https://doi.org/10.1145/3588710

[32] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney,
Alex Iftimie, Alex Karpenko, and et al. 2024. OpenAI o1 System Card.
CoRR abs/2412.16720 (2024). https://doi.org/10.48550/ARXIV.2412.16720
arXiv:2412.16720

[33] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de Las Casas, Emma Bou
Hanna, Florian Bressand, Gianna Lengyel, and et al. 2024. Mixtral of Ex-
perts. CoRR abs/2401.04088 (2024). https://doi.org/10.48550/ARXIV.2401.04088
arXiv:2401.04088

[34] Hideo Kobayashi, Wuwei Lan, Peng Shi, Shuaichen Chang, Jiang Guo, Henghui
Zhu, Zhiguo Wang, and Patrick Ng. 2025. You Only Read Once (YORO): Learning
to Internalize Database Knowledge for Text-to-SQL. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL 2025 - Volume 1: Long

https://doi.org/10.1017/S135132490000005X
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1007/978-3-319-25007-6_25
https://doi.org/10.18653/V1/2021.ACL-LONG.198
https://doi.org/10.48550/ARXIV.2406.11931
https://doi.org/10.48550/ARXIV.2406.11931
https://doi.org/10.48550/ARXIV.2412.19437
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/V1/2021.NAACL-MAIN.105
https://doi.org/10.48550/ARXIV.2208.11857
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2310.07875
https://doi.org/10.48550/ARXIV.2310.07875
https://doi.org/10.14778/3583140.3583165
https://doi.org/10.18653/V1/2021.ACL-LONG.195
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.702
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.702
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.48550/ARXIV.2411.08599
https://doi.org/10.48550/ARXIV.2411.15594
https://doi.org/10.1145/3589292
https://doi.org/10.1145/3589292
https://doi.org/10.18653/V1/D18-1188
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.86
https://doi.org/10.48550/ARXIV.2411.04905
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.1145/3588710
https://doi.org/10.48550/ARXIV.2412.16720
https://doi.org/10.48550/ARXIV.2401.04088


Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025. Association for
Computational Linguistics, 1889–1901.

[35] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large Language Models are Zero-Shot Reasoners. In Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022.

[36] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAtten-
tion. In Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023. ACM, 611–626. https:
//doi.org/10.1145/3600006.3613165

[37] Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. 2025. MCS-SQL:
Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL
Generation. In Proceedings of the 31st International Conference on Computational
Linguistics, COLING 2025, Abu Dhabi, UAE, January 19-24, 2025. Association for
Computational Linguistics, 337–353.

[38] Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin,
Seongjun Yang, Minjoon Seo, Jong-Yeup Kim, and Edward Choi. 2022. EHRSQL:
A Practical Text-to-SQL Benchmark for Electronic Health Records. In Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Infor-
mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022.

[39] Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin
Su, Zhaoqing Suo, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong,
Caiming Xiong, Ruoxi Sun, Qian Liu, Sida I. Wang, and Tao Yu. 2024. Spider
2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL Work-
flows. CoRR abs/2411.07763 (2024). https://doi.org/10.48550/ARXIV.2411.07763
arXiv:2411.07763

[40] Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The
Dawn of Natural Language to SQL: Are We Fully Ready? [Experiment, Analysis
& Benchmark ]. Proc. VLDB Endow. 17, 11 (2024), 3318–3331.

[41] Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu
Luo. 2025. Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search.
CoRR abs/2502.17248 (2025).

[42] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 2023. RESDSQL: De-
coupling Schema Linking and Skeleton Parsing for Text-to-SQL. In Thirty-
Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Con-
ference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thir-
teenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023,
Washington, DC, USA, February 7-14, 2023. AAAI Press, 13067–13075. https:
//doi.org/10.1609/AAAI.V37I11.26535

[43] Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie
Wei, Hongyan Pan, Cuiping Li, and Hong Chen. 2024. CodeS: Towards Building
Open-source Language Models for Text-to-SQL. Proc. ACM Manag. Data 2, 3
(2024), 127. https://doi.org/10.1145/3654930

[44] Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo,
Fei Huang, Wenyu Du, Luo Si, and Yongbin Li. 2023. Graphix-T5: Mixing Pre-
trained Transformers with Graph-Aware Layers for Text-to-SQL Parsing. In
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023,
Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI
2023, Washington, DC, USA, February 7-14, 2023. AAAI Press, 13076–13084. https:
//doi.org/10.1609/AAAI.V37I11.26536

[45] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, and et al. 2023. Can LLM
Already Serve as A Database Interface? A BIg Bench for Large-Scale Database
Grounded Text-to-SQLs. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023.

[46] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu,
Evgenii Zheltonozhskii, and et al. 2023. StarCoder: may the source be with you!
Trans. Mach. Learn. Res. 2023 (2023).

[47] Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuyu Luo, Yuxin
Zhang, Ju Fan, Guoliang Li, and Nan Tang. 2024. A Survey of NL2SQL with Large
Language Models: Where are we, and where are we going? CoRR abs/2408.05109
(2024).

[48] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

[49] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, and et al. 2024. StarCoder 2 and The Stack v2: The Next Genera-
tion. CoRR abs/2402.19173 (2024). https://doi.org/10.48550/ARXIV.2402.19173
arXiv:2402.19173

[50] Limin Ma, Ken Pu, Ying Zhu, and Wesley Taylor. 2025. Comparing Large Lan-
guage Models for Generating Complex Queries. Journal of Computer and Com-
munications 13 (2025), 236–249.

[51] Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi.
2024. The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned
Language Models. CoRR abs/2408.07702 (2024). https://doi.org/10.48550/ARXIV.
2408.07702 arXiv:2408.07702

[52] Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad,
Adriana Meza Soria, Michele Merler, Parameswaran Selvam, Saptha Suren-
dran, Shivdeep Singh, Manish Sethi, Xuan-Hong Dang, and et al. 2024. Gran-
ite Code Models: A Family of Open Foundation Models for Code Intelli-
gence. CoRR abs/2405.04324 (2024). https://doi.org/10.48550/ARXIV.2405.04324
arXiv:2405.04324

[53] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:
//doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774

[54] OpenAI. 2024. GPT-4 Turbo and GPT-4. (2024).
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4.

[55] OpenAI. 2024. GPT-4o mini: advancing cost-efficient intelligence. (2024).
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

[56] OpenAI. 2024. Hello GPT-4o. (2024). https://openai.com/index/hello-gpt-4o/.
[57] Ellie Pavlick and Chris Callison-Burch. 2016. Simple PPDB: A Paraphrase Data-

base for Simplification. In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany,
Volume 2: Short Papers. The Association for Computer Linguistics.

[58] Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei,
Gaurav Tarlok Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan Ö. Arik.
2024. CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate
Selection in Text-to-SQL. CoRR abs/2410.01943 (2024). https://doi.org/10.48550/
ARXIV.2410.01943 arXiv:2410.01943

[59] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed In-
Context Learning of Text-to-SQL with Self-Correction. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023.

[60] Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Yu Cheng, Chenghu Zhou,
XinbingWang, Quanshi Zhang, and Zhouhan Lin. 2022. RASAT: Integrating Rela-
tional Structures into Pretrained Seq2SeqModel for Text-to-SQL. In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022. Association for Com-
putational Linguistics, 3215–3229. https://doi.org/10.18653/V1/2022.EMNLP-
MAIN.211

[61] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[62] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67.

[63] Daking Rai, Bailin Wang, Yilun Zhou, and Ziyu Yao. 2023. Improving General-
ization in Language Model-based Text-to-SQL Semantic Parsing: Two Simple
Semantic Boundary-based Techniques. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), ACL
2023, Toronto, Canada, July 9-14, 2023. Association for Computational Linguistics,
150–160. https://doi.org/10.18653/V1/2023.ACL-SHORT.15

[64] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
memory optimizations toward training trillion parameter models. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November
9-19, 2020. IEEE/ACM, 20. https://doi.org/10.1109/SC41405.2020.00024

[65] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. 2022. Evaluating the
Text-to-SQL Capabilities of Large Language Models. CoRR abs/2204.00498 (2022).
https://doi.org/10.48550/ARXIV.2204.00498 arXiv:2204.00498

[66] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P.
Lillicrap, Jean-Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, Ioannis Antonoglou, Rohan Anil, Sebastian Borgeaud,
Andrew M. Dai, Katie Millican, Ethan Dyer, Mia Glaese, Thibault Sottiaux, Ben-
jamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, and et al. 2024. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of con-
text. CoRR abs/2403.05530 (2024). https://doi.org/10.48550/ARXIV.2403.05530
arXiv:2403.05530

[67] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[68] Gaetano Rossiello, Pierpaolo Basile, and Giovanni Semeraro. 2017. Centroid-
based Text Summarization through Compositionality of Word Embeddings. In
Proceedings of the Workshop on Summarization and Summary Evaluation Across
Source Types and Genres, MultiLing@EACL 2017, Valencia, Spain, April 3, 2017.
Association for Computational Linguistics, 12–21. https://doi.org/10.18653/V1/
W17-1003

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.48550/ARXIV.2411.07763
https://doi.org/10.1609/AAAI.V37I11.26535
https://doi.org/10.1609/AAAI.V37I11.26535
https://doi.org/10.1145/3654930
https://doi.org/10.1609/AAAI.V37I11.26536
https://doi.org/10.1609/AAAI.V37I11.26536
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2408.07702
https://doi.org/10.48550/ARXIV.2408.07702
https://doi.org/10.48550/ARXIV.2405.04324
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2410.01943
https://doi.org/10.48550/ARXIV.2410.01943
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.211
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.211
https://doi.org/10.18653/V1/2023.ACL-SHORT.15
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.48550/ARXIV.2204.00498
https://doi.org/10.48550/ARXIV.2403.05530
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/V1/W17-1003
https://doi.org/10.18653/V1/W17-1003


[69] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, 9895–9901.
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.779

[70] Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini,
and Amin Saberi. 2024. CHESS: Contextual Harnessing for Efficient SQL Syn-
thesis. CoRR abs/2405.16755 (2024). https://doi.org/10.48550/ARXIV.2405.16755
arXiv:2405.16755

[71] Transaction Processing Performance Council (TPC). [n.d.]. TPC-DS: Decision
Support Benchmark. Online. Available: http://www.tpc.org/tpcds/.

[72] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9, 11 (2008).

[73] Liane Vogel, Jan-Micha Bodensohn, and Carsten Binnig. 2024. WikiDBs: A Large-
Scale Corpus Of Relational Databases From Wikidata. In Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024.

[74] Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai,
Zhao Yan, Qian-Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. 2025. MAC-SQL:
A Multi-Agent Collaborative Framework for Text-to-SQL. In Proceedings of the
31st International Conference on Computational Linguistics, COLING 2025, Abu
Dhabi, UAE, January 19-24, 2025. Association for Computational Linguistics,
540–557.

[75] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020. Association for
Computational Linguistics, 7567–7578. https://doi.org/10.18653/V1/2020.ACL-
MAIN.677

[76] BailinWang,Wenpeng Yin, Xi Victoria Lin, and Caiming Xiong. 2021. Learning to
Synthesize Data for Semantic Parsing. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021. Association
for Computational Linguistics, 2760–2766. https://doi.org/10.18653/V1/2021.
NAACL-MAIN.220

[77] Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi
Mao, Oleksandr Polozov, and Rishabh Singh. 2018. Robust Text-to-SQL Genera-
tion with Execution-Guided Decoding. arXiv e-prints, Article arXiv:1807.03100
(July 2018), arXiv:1807.03100 pages. https://doi.org/10.48550/arXiv.1807.03100
arXiv:1807.03100 [cs.CL]

[78] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022.

[79] Nathaniel Weir, Prasetya Ajie Utama, Alex Galakatos, Andrew Crotty, Amir
Ilkhechi, Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hät-
tasch, Steffen Eger, Ugur Çetintemel, and Carsten Binnig. 2020. DBPal: A Fully
Pluggable NL2SQL Training Pipeline. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020. ACM, 2347–2361.

[80] KunWu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan Xiao, Hua Wu, Min Zhang,
and HaifengWang. 2021. Data Augmentation with Hierarchical SQL-to-Question
Generation for Cross-domain Text-to-SQL Parsing. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021. Association
for Computational Linguistics, 8974–8983. https://doi.org/10.18653/V1/2021.
EMNLP-MAIN.707

[81] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, and
et al. 2024. Qwen2.5 Technical Report. CoRR abs/2412.15115 (2024). https:
//doi.org/10.48550/ARXIV.2412.15115 arXiv:2412.15115

[82] Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou.
2024. Synthesizing Text-to-SQL Data fromWeak and Strong LLMs. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational
Linguistics, 7864–7875. https://doi.org/10.18653/V1/2024.ACL-LONG.425

[83] Wei Yang, Peng Xu, and Yanshuai Cao. 2021. Hierarchical Neural Data Synthesis
for Semantic Parsing. CoRR abs/2112.02212 (2021). arXiv:2112.02212

[84] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020. Association for Computational
Linguistics, 8413–8426. https://doi.org/10.18653/V1/2020.ACL-MAIN.745

[85] Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi
Yang, Dragomir R. Radev, Richard Socher, and Caiming Xiong. 2021. GraPPa:
Grammar-Augmented Pre-Training for Table Semantic Parsing. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

[86] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and
Dragomir R. Radev. 2018. SyntaxSQLNet: Syntax Tree Networks for Complex
and Cross-Domain Text-to-SQL Task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018. Association for Computational Linguistics, 1653–1663.
https://doi.org/10.18653/V1/D18-1193

[87] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, and et al. 2018. Spider: A
Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic
Parsing and Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31 - November
4, 2018, Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.).
Association for Computational Linguistics, 3911–3921. https://doi.org/10.18653/
V1/D18-1425

[88] Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten, Geor-
gia Koutrika, and Kurt Stockinger. 2023. ScienceBenchmark: A Complex Real-
World Benchmark for Evaluating Natural Language to SQL Systems. Proc. VLDB
Endow. 17, 4 (2023), 685–698. https://doi.org/10.14778/3636218.3636225

[89] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-Judge with MT-
Bench and Chatbot Arena. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023.

[90] Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic Evaluation for Text-to-SQL
with Distilled Test Suites. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20,
2020. Association for Computational Linguistics, 396–411. https://doi.org/10.
18653/V1/2020.EMNLP-MAIN.29

[91] Victor Zhong, Mike Lewis, Sida I. Wang, and Luke Zettlemoyer. 2020. Grounded
Adaptation for Zero-shot Executable Semantic Parsing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020. Association for Computational Linguistics,
6869–6882. https://doi.org/10.18653/V1/2020.EMNLP-MAIN.558

[92] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017). arXiv:1709.00103

[93] Lianghui Zhu, Xinggang Wang, and Xinlong Wang. 2023. JudgeLM: Fine-tuned
Large Language Models are Scalable Judges. CoRR abs/2310.17631 (2023). https:
//doi.org/10.48550/ARXIV.2310.17631 arXiv:2310.17631

https://doi.org/10.18653/V1/2021.EMNLP-MAIN.779
https://doi.org/10.48550/ARXIV.2405.16755
http://www.tpc.org/tpcds/
https://doi.org/10.18653/V1/2020.ACL-MAIN.677
https://doi.org/10.18653/V1/2020.ACL-MAIN.677
https://doi.org/10.18653/V1/2021.NAACL-MAIN.220
https://doi.org/10.18653/V1/2021.NAACL-MAIN.220
https://doi.org/10.48550/arXiv.1807.03100
https://arxiv.org/abs/1807.03100
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.707
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.707
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.18653/V1/2024.ACL-LONG.425
https://doi.org/10.18653/V1/2020.ACL-MAIN.745
https://doi.org/10.18653/V1/D18-1193
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.18653/V1/D18-1425
https://doi.org/10.14778/3636218.3636225
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.29
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.29
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.558
https://doi.org/10.48550/ARXIV.2310.17631
https://doi.org/10.48550/ARXIV.2310.17631

	Abstract
	1 Introduction
	2 Related Work
	2.1 Text-to-SQL
	2.2 Data Augmentation for Text-to-SQL

	3 Data Synthesis Framework
	3.1 Overview
	3.2 Web Table-Driven Database Synthesis
	3.3 Complexity-Aware SQL Query Generation
	3.4 Stylized NL Question Synthesis
	3.5 Chain-of-Thought Solution Synthesis

	4 SynSQL-2.5M: A Million-Scale Dataset
	4.1 Overall Statistics
	4.2 Database Statistics
	4.3 SQL Statistics
	4.4 Question Statistics
	4.5 Data Quality Evaluation

	5 OmniSQL: State-of-the-Art Open-Source Text-to-SQL LLM
	5.1 Input-Output Construction
	5.2 Supervised Fine-Tuning

	6 Experiments
	6.1 Experimental Setup
	6.2 Main Results
	6.3 Ablation studies
	6.4 Comparison with Data Augmentation

	7 Conclusion
	Acknowledgments
	References



